Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The cytotoxicity of gallium maltolate in glioblastoma cells is enhanced by metformin through combined action on mitochondrial complex 1.

Identifieur interne : 000019 ( Main/Exploration ); précédent : 000018; suivant : 000020

The cytotoxicity of gallium maltolate in glioblastoma cells is enhanced by metformin through combined action on mitochondrial complex 1.

Auteurs : Hisham S. Alhajala [États-Unis] ; John L. Markley [États-Unis] ; Jin Hae Kim [États-Unis] ; Mona M. Al-Gizawiy [États-Unis] ; Kathleen M. Schmainda [États-Unis] ; John S. Kuo [États-Unis] ; Christopher R. Chitambar [États-Unis]

Source :

RBID : pubmed:32391122

Abstract

New drugs are needed for glioblastoma, an aggressive brain tumor with a dismal prognosis. We recently reported that gallium maltolate (GaM) retards the growth of glioblastoma in a rat orthotopic brain tumor model by inhibiting mitochondrial function and iron-dependent ribonucleotide reductase (RR). However, GaM's mechanism of action at the mitochondrial level is not known. Given the interaction between gallium and iron metabolism, we hypothesized that gallium might target iron-sulfur (Fe-S) cluster-containing mitochondrial proteins. Using Extracellular Flux Analyzer technology, we confirmed that after a 24-h incubation, GaM 50 μmol/L inhibited glioblastoma cell growth by <10% but inhibited cellular oxygen consumption rate by 44% and abrogated mitochondrial reserve capacity. GaM blocked mitochondrial complex I activity and produced a 2.9-fold increase in cellular ROS. NMR spectroscopy revealed that gallium binds to IscU, the bacterial scaffold protein for Fe-S cluster assembly and stabilizes its folded state. Gallium inhibited the rate of in vitro cluster assembly catalyzed by bacterial cysteine desulfurase in a reaction mixture containing IscU, Fe (II), DTT, and L-cysteine. Metformin, a complex I inhibitor, enhanced GaM's inhibition of complex I, further increased cellular ROS levels, and synergistically enhanced GaM's cytotoxicity in glioblastoma cells in 2-D and 3-D cultures. Metformin did not affect GaM action on cellular iron uptake or transferrin receptor1 expression nor did it enhance the cytotoxicity of the RR inhibitor Didox. Our results show that GaM inhibits complex I by disrupting iron-sulfur cluster assembly and that its cytotoxicity can be synergistically enhanced by metformin through combined action on complex I.

DOI: 10.18632/oncotarget.27567
PubMed: 32391122
PubMed Central: PMC7197450


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The cytotoxicity of gallium maltolate in glioblastoma cells is enhanced by metformin through combined action on mitochondrial complex 1.</title>
<author>
<name sortKey="Alhajala, Hisham S" sort="Alhajala, Hisham S" uniqKey="Alhajala H" first="Hisham S" last="Alhajala">Hisham S. Alhajala</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Markley, John L" sort="Markley, John L" uniqKey="Markley J" first="John L" last="Markley">John L. Markley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jin Hae" sort="Kim, Jin Hae" uniqKey="Kim J" first="Jin Hae" last="Kim">Jin Hae Kim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Al Gizawiy, Mona M" sort="Al Gizawiy, Mona M" uniqKey="Al Gizawiy M" first="Mona M" last="Al-Gizawiy">Mona M. Al-Gizawiy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmainda, Kathleen M" sort="Schmainda, Kathleen M" uniqKey="Schmainda K" first="Kathleen M" last="Schmainda">Kathleen M. Schmainda</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuo, John S" sort="Kuo, John S" uniqKey="Kuo J" first="John S" last="Kuo">John S. Kuo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neurosurgery and Mulva Clinic for the Neurosciences, Dell Medical School, Austin, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurosurgery and Mulva Clinic for the Neurosciences, Dell Medical School, Austin, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chitambar, Christopher R" sort="Chitambar, Christopher R" uniqKey="Chitambar C" first="Christopher R" last="Chitambar">Christopher R. Chitambar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32391122</idno>
<idno type="pmid">32391122</idno>
<idno type="doi">10.18632/oncotarget.27567</idno>
<idno type="pmc">PMC7197450</idno>
<idno type="wicri:Area/Main/Corpus">000095</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000095</idno>
<idno type="wicri:Area/Main/Curation">000095</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000095</idno>
<idno type="wicri:Area/Main/Exploration">000095</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The cytotoxicity of gallium maltolate in glioblastoma cells is enhanced by metformin through combined action on mitochondrial complex 1.</title>
<author>
<name sortKey="Alhajala, Hisham S" sort="Alhajala, Hisham S" uniqKey="Alhajala H" first="Hisham S" last="Alhajala">Hisham S. Alhajala</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Markley, John L" sort="Markley, John L" uniqKey="Markley J" first="John L" last="Markley">John L. Markley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jin Hae" sort="Kim, Jin Hae" uniqKey="Kim J" first="Jin Hae" last="Kim">Jin Hae Kim</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Al Gizawiy, Mona M" sort="Al Gizawiy, Mona M" uniqKey="Al Gizawiy M" first="Mona M" last="Al-Gizawiy">Mona M. Al-Gizawiy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmainda, Kathleen M" sort="Schmainda, Kathleen M" uniqKey="Schmainda K" first="Kathleen M" last="Schmainda">Kathleen M. Schmainda</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuo, John S" sort="Kuo, John S" uniqKey="Kuo J" first="John S" last="Kuo">John S. Kuo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Neurosurgery and Mulva Clinic for the Neurosciences, Dell Medical School, Austin, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurosurgery and Mulva Clinic for the Neurosciences, Dell Medical School, Austin, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chitambar, Christopher R" sort="Chitambar, Christopher R" uniqKey="Chitambar C" first="Christopher R" last="Chitambar">Christopher R. Chitambar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oncotarget</title>
<idno type="eISSN">1949-2553</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">New drugs are needed for glioblastoma, an aggressive brain tumor with a dismal prognosis. We recently reported that gallium maltolate (GaM) retards the growth of glioblastoma in a rat orthotopic brain tumor model by inhibiting mitochondrial function and iron-dependent ribonucleotide reductase (RR). However, GaM's mechanism of action at the mitochondrial level is not known. Given the interaction between gallium and iron metabolism, we hypothesized that gallium might target iron-sulfur (Fe-S) cluster-containing mitochondrial proteins. Using Extracellular Flux Analyzer technology, we confirmed that after a 24-h incubation, GaM 50 μmol/L inhibited glioblastoma cell growth by <10% but inhibited cellular oxygen consumption rate by 44% and abrogated mitochondrial reserve capacity. GaM blocked mitochondrial complex I activity and produced a 2.9-fold increase in cellular ROS. NMR spectroscopy revealed that gallium binds to IscU, the bacterial scaffold protein for Fe-S cluster assembly and stabilizes its folded state. Gallium inhibited the rate of
<i>in vitro</i>
cluster assembly catalyzed by bacterial cysteine desulfurase in a reaction mixture containing IscU, Fe (II), DTT, and L-cysteine. Metformin, a complex I inhibitor, enhanced GaM's inhibition of complex I, further increased cellular ROS levels, and synergistically enhanced GaM's cytotoxicity in glioblastoma cells in 2-D and 3-D cultures. Metformin did not affect GaM action on cellular iron uptake or transferrin receptor1 expression nor did it enhance the cytotoxicity of the RR inhibitor Didox. Our results show that GaM inhibits complex I by disrupting iron-sulfur cluster assembly and that its cytotoxicity can be synergistically enhanced by metformin through combined action on complex I.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32391122</PMID>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1949-2553</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Oncotarget</Title>
<ISOAbbreviation>Oncotarget</ISOAbbreviation>
</Journal>
<ArticleTitle>The cytotoxicity of gallium maltolate in glioblastoma cells is enhanced by metformin through combined action on mitochondrial complex 1.</ArticleTitle>
<Pagination>
<MedlinePgn>1531-1544</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.18632/oncotarget.27567</ELocationID>
<Abstract>
<AbstractText>New drugs are needed for glioblastoma, an aggressive brain tumor with a dismal prognosis. We recently reported that gallium maltolate (GaM) retards the growth of glioblastoma in a rat orthotopic brain tumor model by inhibiting mitochondrial function and iron-dependent ribonucleotide reductase (RR). However, GaM's mechanism of action at the mitochondrial level is not known. Given the interaction between gallium and iron metabolism, we hypothesized that gallium might target iron-sulfur (Fe-S) cluster-containing mitochondrial proteins. Using Extracellular Flux Analyzer technology, we confirmed that after a 24-h incubation, GaM 50 μmol/L inhibited glioblastoma cell growth by <10% but inhibited cellular oxygen consumption rate by 44% and abrogated mitochondrial reserve capacity. GaM blocked mitochondrial complex I activity and produced a 2.9-fold increase in cellular ROS. NMR spectroscopy revealed that gallium binds to IscU, the bacterial scaffold protein for Fe-S cluster assembly and stabilizes its folded state. Gallium inhibited the rate of
<i>in vitro</i>
cluster assembly catalyzed by bacterial cysteine desulfurase in a reaction mixture containing IscU, Fe (II), DTT, and L-cysteine. Metformin, a complex I inhibitor, enhanced GaM's inhibition of complex I, further increased cellular ROS levels, and synergistically enhanced GaM's cytotoxicity in glioblastoma cells in 2-D and 3-D cultures. Metformin did not affect GaM action on cellular iron uptake or transferrin receptor1 expression nor did it enhance the cytotoxicity of the RR inhibitor Didox. Our results show that GaM inhibits complex I by disrupting iron-sulfur cluster assembly and that its cytotoxicity can be synergistically enhanced by metformin through combined action on complex I.</AbstractText>
<CopyrightInformation>Copyright: © 2020 Alhajala et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Alhajala</LastName>
<ForeName>Hisham S</ForeName>
<Initials>HS</Initials>
<AffiliationInfo>
<Affiliation>Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Markley</LastName>
<ForeName>John L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Jin Hae</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Al-Gizawiy</LastName>
<ForeName>Mona M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmainda</LastName>
<ForeName>Kathleen M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuo</LastName>
<ForeName>John S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurosurgery and Mulva Clinic for the Neurosciences, Dell Medical School, Austin, Texas, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chitambar</LastName>
<ForeName>Christopher R</ForeName>
<Initials>CR</Initials>
<AffiliationInfo>
<Affiliation>Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Oncotarget</MedlineTA>
<NlmUniqueID>101532965</NlmUniqueID>
<ISSNLinking>1949-2553</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">gallium</Keyword>
<Keyword MajorTopicYN="N">glioblastoma</Keyword>
<Keyword MajorTopicYN="N">iron</Keyword>
<Keyword MajorTopicYN="N">metformin</Keyword>
<Keyword MajorTopicYN="N">mitochondrial complex I</Keyword>
</KeywordList>
<CoiStatement>CONFLICTS OF INTEREST None.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32391122</ArticleId>
<ArticleId IdType="doi">10.18632/oncotarget.27567</ArticleId>
<ArticleId IdType="pii">27567</ArticleId>
<ArticleId IdType="pmc">PMC7197450</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Crit Rev Oncol Hematol. 2016 Mar;99:389-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26830009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancers (Basel). 2017 May 06;9(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28481268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2014 Sep 15;462(3):475-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25017630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1991 Nov 15;51(22):6199-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1933878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Met Based Drugs. 2000;7(1):33-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18475921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drugs. 1995 May;49(5):721-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7601013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2018 Jun;17(6):1240-1250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29592883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22203963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1416-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25450980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rep. 2010 Sep-Oct;62(5):956-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21098880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Oncol. 2017 Jun 08;7:118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28642839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurol Sci. 2000 Jun 15;176(2):88-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10930589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 Jun 15;348 Pt 3:607-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10839993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2016 Jun 28;7(26):40767-40780</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 13;10(4):e0123721</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25867026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2013 Sep;24(9):469-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23773243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1998 Jun 15;91(12):4686-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9616166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2012 Jul 1;18(13):3628-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22589395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Mar 3;61(5):667-676</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26942671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 1998 Jul 17;129(2):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9719462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Feb;60(Pt 2):298-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14747706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jun 01;10(6):e0127967</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26030161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1979 Mar;39(3):844-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">427774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1992 Dec 15;44(12):2403-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1335254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Obstet Gynecol. 2015 Apr;212(4):479.e1-479.e10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25446664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Jan;11(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25517383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2016 Apr 12;23(4):569-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27076070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 1983 Dec 16;65(1-2):55-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6606682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuro Oncol. 2017 Nov 6;19(suppl_5):v1-v88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29117289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1988 Dec;72(6):1930-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3058232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Sep 15;45(6):763-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2013;82:551-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23527692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzyme Regul. 1984;22:27-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6382953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Jun 4;136(22):7933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24810328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1986 Dec;78(6):1538-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3465751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Endocrinol. 2012 Mar 29;48(3):R31-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2018 Apr;14:316-327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29017115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Haematol. 2006 Oct;135(1):52-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16925573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Aug;1863(8):2044-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27150508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurol Res Int. 2012;2012:878425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22530127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 2015 Mar;135(3):877-884</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Oncol Hematol. 2017 Mar;111:60-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28259296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Sep 15;294 ( Pt 3):873-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8379943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 May;1853(5):1130-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25661197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Dec 11;580(28-29):6714-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17134703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2014 Feb;9(2):421-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24457333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neoplasia. 2012 May;14(5):420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2013 Apr 17;587(8):1172-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23333622</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
<li>Wisconsin</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Alhajala, Hisham S" sort="Alhajala, Hisham S" uniqKey="Alhajala H" first="Hisham S" last="Alhajala">Hisham S. Alhajala</name>
</region>
<name sortKey="Al Gizawiy, Mona M" sort="Al Gizawiy, Mona M" uniqKey="Al Gizawiy M" first="Mona M" last="Al-Gizawiy">Mona M. Al-Gizawiy</name>
<name sortKey="Chitambar, Christopher R" sort="Chitambar, Christopher R" uniqKey="Chitambar C" first="Christopher R" last="Chitambar">Christopher R. Chitambar</name>
<name sortKey="Chitambar, Christopher R" sort="Chitambar, Christopher R" uniqKey="Chitambar C" first="Christopher R" last="Chitambar">Christopher R. Chitambar</name>
<name sortKey="Kim, Jin Hae" sort="Kim, Jin Hae" uniqKey="Kim J" first="Jin Hae" last="Kim">Jin Hae Kim</name>
<name sortKey="Kuo, John S" sort="Kuo, John S" uniqKey="Kuo J" first="John S" last="Kuo">John S. Kuo</name>
<name sortKey="Markley, John L" sort="Markley, John L" uniqKey="Markley J" first="John L" last="Markley">John L. Markley</name>
<name sortKey="Schmainda, Kathleen M" sort="Schmainda, Kathleen M" uniqKey="Schmainda K" first="Kathleen M" last="Schmainda">Kathleen M. Schmainda</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000019 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000019 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32391122
   |texte=   The cytotoxicity of gallium maltolate in glioblastoma cells is enhanced by metformin through combined action on mitochondrial complex 1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32391122" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020